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Abstract: With the growing amount of data generated from millions of transactions taking place every second all over 

the world, it has become increasingly necessary to find interesting patterns from this data. Multinational companies, 

being spread over the globe, have to integrate data from various geographically dispersed sites. This data is generated 

from varied sources in heterogeneous forms and has to be processed before mining can be carried out on it. Mining 
association rules from data involves finding correlations between two or more variables in a dataset. Algorithms like 

Fast Distributed Mining (FDM) and Count Distribution Algorithm (CDA) have been used for association rule mining in 

a distributed environment. However, these algorithms prove to be inefficient when it comes to dynamically streaming 

input. Our proposed solution suggests a methodology to implement Association Rule Mining on Distributed Systems 

using ODAM (Optimized Distributed Association Rule Mining) algorithm on batchwise data. Further, in an effort to 

aid the user in analysing the output, we display the association rules generated for each item as well as for the entire 

dataset. Also, the user can view the time series analysis for each association rule. 
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I. INTRODUCTION 
 

Distributed Association Rule Mining (DARM) generates 

association rules from geographically distributed datasets. 

DARM generates global frequent itemsets by combining 

and analysing frequent itemsets generated at local sites. 

However none of the DARM algorithms, Fast Distributed 

Mining (FDM), Count Distribution Algorithm (CDA) or 

ODAM (Optimized Distributed Association Rule Mining) 

can handle dynamically streaming data.  They are 

designed to work in a static environment where the 

database does not change or get added to. 

In a real world scenario, transactional data is always 
increasing with time. New transactions get added to the 

database at the rate of 1000 every second. We need a time 

efficient solution which repeatedly generates rules for the 

newly added batches of transactions. The changing trends 

in the association rules as new data comes in should be 

accurately reflected. Our proposed solution suggests a 

methodology to implement Association Rule Mining on 

Distributed Systems using ODAM (Optimized Distributed 

Association Rule Mining) algorithm on batchwise data. It 

avoids repeated scanning of the old transactions thus 

giving a considerable time reduction in generating rules 
when the data is input batchwise. This makes it ideal for 

real world applications where it can generate association 

rules keeping pace with continuously streaming in batches 

of data. Further, in an effort to aid the user in analyzing 

the output, we display the association rules generated for 

each item as well as for the entire dataset. This helps the 

user to better visualize how a single item is related to all 

other items in the database. The user can view the 

changing trend of each association rule over all the 

previous batches to get an idea of how the support for the 

rule has changed over time.  

II. REVIEW OF LITERATURE 
 

The papers referred by us helped us in formulating an idea 

of the different Distributed Association Rule Mining 

(DARM) algorithms. 

 

A. Study of Existing Systems 

Association Rule Mining (ARM) is a method of finding 

interesting patterns for strategic analysis and business 

decisions from huge datasets[1]. It includes various 

algorithms – Apriori and Frequent Pattern Mining. In these 

algorithms for each iteration we find the candidate 

itemsets and prune the infrequent itemsets. ARM when 
implemented in distributed environment generates globally 

frequent patterns for an organization. It includes 

algorithms like Count Distribution Algorithm (CDA), Fast 

Distribution Mining (FDM) algorithm and Optimized 

Distributed Association Rule Mining (ODAM) algorithm 

[2]. 

 

Count Distribution Algorithm (CDA) is a data 

parallelism algorithm for mining associative rules. It 

locally computes support counts for each itemsets and 

generates candidate sets based on the local minimum 
support count. These candidate sets along with their 

support counts are broadcasted to all other nodes. Each 

node computes global frequent itemsets in parallel. At the 

end of each iteration, all the nodes have same global 

frequent itemsets [3]. 

The main feature of CDA is that it uses a simple 

synchronization scheme as it uses only one set of 

messages at each iteration[4]. 

 

Fast Distribution Mining (FDM) algorithm is a 

modification of CDA. Here, in each iteration support 
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counts of all itemsets are computed. Considering the local 

minimum support count for that node, the infrequent items 

are pruned locally and the candidate set is generated. The 

node, at which an itemset is frequent, broadcasts requests 

to all other nodes for collecting their support counts for 

that itemset. Once the node receives the counts, it 

computes the global count for that candidate. It compares 

this count with the global minimum support count to check 

if the candidate is globally large. At the end of each 

iteration globally large itemsets found are broadcasted to 

all the nodes[5]. 
 

The three main features of FDM are: 

 Using some interesting relationships between locally 

and globally generated sets, we minimize the number 

of candidate sets generated and thus reduce the number 

of messages sent.  

 FDM uses both local and global pruning. 

 This algorithm requires O(n) for communicating with 

each other. 

 

If the distribution of the itemsets among the partitions is 
skewed such that the globally frequent itemsets are 

confined to a few local sites, then lesser candidate sets are 

generated; thus improving the performance of the 

algorithm. Another major improvement in FDM is the 

usage of relaxation factor. With the help of this, a site 

broadcasts not only those candidate sets which clearly 

satisfy the minimum support threshold but also the ones 

which almost satisfy it. This increases the effectiveness of 

global pruning[6]. 

 

Optimized Distributed Association Rule Mining 
(ODAM) algorithm involves a central server which 

receives candidate sets from all the other nodes and 

generates global frequent itemsets. 

 

In CD and FDM algorithms numerous candidate itemsets 

are generated, which involves high communication costs. 

In contrast, ODAM eliminates infrequent items, thereby 

reducing dataset size significantly; so that we can 

accumulate more transactions in the main memory. 

Moreover, the time taken for scanning the database at each 

iteration is less. As an added advantage, ODAM reduces 

communication costs and enforces synchronization 
between local nodes since they communicate only with 

global server[7]. 

 

B. Present Architecture 

A large database DB with D transactions is partitioned 

among n geographically distributed sites as DB1, DB2 …. 

DBn. The DARM architecture also consists of a global 

server which communicates with all the local sites. For 

every iteration, each site uses its local database to compute 

candidate itemsets which are above the predefined local 

minimum support count. The local sites send these 
candidate itemsets along with their support counts to the 

server. 

Based on the counts received, the server calculates the 

global count for each itemset by methods such as 

averaging, summation, etc. If the count for the itemset 

exceeds the global minimum support count, then the 

itemset is considered globally frequent. The newly 

computed global frequent itemsets are sent back to all the 

local sites. The local sites eliminate the infrequent items 

from the transactions in memory so as to reduce the 

average transaction length which makes the scanning of 

transactions faster for future iterations. 

 

C. Drawbacks of Existing System 

 Cannot be used with dynamic database. 

 Too many or too less rules may be generated based on 

threshold values. 

 Rules generated is not well presented for human 

analysis 

 Takes a lot of time to execute the entire algorithm and 

generate results. 

 The entire algorithm needs to be executed again when 

new transactions get added. 

 

III. PROPOSED SOLUTION 

 
Our proposed solution involves modifying the ODAM 

algorithm to make it suitable for batch processing in a time 

efficient manner. 

 

 
Figure 1: Block Diagram of Proposed Solution 

 
Input Parameters and Batch file: User provides 

transactional batch file and enters parameters such as 

batch number, number of items in given transaction file, 

number of transactions, minimum support count, 

minimum threshold etc. Thus these parameters can be 
adjusted as and when required. We use Netbeans Swing 

GUI to develop this interface. 

 

Apriori on Client: Apriori acts as a base algorithm for 

most parallel algorithms. This algorithm helps to generate 

local frequent itemsets. Client connects to the global site 

using RMI registry[8]. 

 

Association rules generated: Frequent itemsets from 

various clients are combined at a global site. This merging 

involves averaging support counts from various clients to 
generate global frequent itemset.  Based on global frequent 

itemsets association rules are generated to show 
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correlations between various itemsets. Further global 

frequent itemset is used for transaction reduction, which is 

performed by clients on their respective machines to 

increase space utilization by eliminating infrequent items 

from the transactions.  

 

Pie graph representation: To make analysis of the 

association rules easier, we display the association rules 

generated for each item as well as for the entire dataset. 

This helps to understand correlation of an item to various 

other items in the dataset. Each pie chart displays the 
support count along with the association rule to allow user 

understand the strength of the rule generated. For 

generating pie charts we make use of JFrames. 

 

Combine new rules with previous rules and continues 

the process next batch file: The new transactions that 

keep coming are collected over an interval of time to form 

the next batch file. This newly generated batch file is used 

to compute new association rule by combining the results 

of the previous batch with the new one.  

 
Time series analysis: To analyze how the support for a 

particular rule has changed over the past batches, we 

display the support counts of that rule over the all the 

batches till date in the form of a line graph. This helps the 

user in analyzing the upward of downward trend in the 

rules and also in predicting the future support expectancy 

of the rule. 

 

A. Benefits of proposed solution 
 

 The user can view the association rules of the item he 

is interested in, making analysis simpler and more apt 

for analysis. 

 With pie chart representation user can easily 

differentiate strong association rules and weak 

association rules 

 The user can view the changing trend of each rule over 

all the previous batches to get an idea of how the 

support for the rule has changed over time. 

 The UI designed makes the entire process of generating 

association rule very flexible. 

 The recent trends can be combined with old trends in a 

space and time efficient manner. 

 The ODAM algorithm used provides global analysis 

and supports transaction reduction, which helps saves 

memory. 

 The database scan to be performed is much smaller and 

thus quicker in batch based computing than static 

approach. 

 Comparing recent trends with old trends is easily 

achieved and can be used to develop time line analysis 

of changing business scenario. 

 Saves bandwidth costs as only counts of frequent 

itemset are sent to global site instead of entire 

transactions. 

 After being used to find association rules, the old sets 

of transactions becomes redundant and are not required 

to be stored in memory. 

B. Proposed Architecture 

The architecture consists of a global server which 

communicates with all the local sites using Remote 

Method Invocation. The clients will provide the 

parameters of the batch and the support count based on 

which the frequent itemsets will be generated. For every 

iteration, each site uses Apriori algorithm to compute 

candidate itemsets which are above the predefined local 

minimum support count. The local sites send these 

candidate itemsets along with their support counts to the 

server. 
Based on the counts received, the server calculates the 

global count for each itemset by methods such as 

averaging. If the count for the itemset exceeds the global 

minimum support count, then the itemset is considered 

globally frequent. The newly computed global frequent 

itemsets are sent back to all the local sites with their 

support counts. The local sites then performs transaction 

reduction, where the infrequent transactions from the 

database are removed so as to reduce the average 

transaction length which makes the scanning of 

transactions faster for future iterations and also the saves 
the memory.  

Once all the iterations are done, the association rules are 

computed on the server side and are displayed using pie 

charts. One pie chart shows the association rules of all 

items present in the dataset together and other pie charts 

are of each item individually which helps to analyze the 

rules of items the user is interested in. 

Moreover, after successively running the algorithm on 

several batches of data, the time series analysis chart for 

any rule over all the batches is generated and displayed to 

the user. 

 

 
Figure 2: Proposed Architecture 

 
After the association rules of a batch are generated the 
user can continue the process by inputting another batch of 

transaction file and its parameters. For the new batch the 

same process is repeated, but the computation is done only 

on the new set of transactions and their support counts are 

averaged with those of the previous batch, thereby 

improving the efficiency and saving the time to compute 

the rules. 
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IV. MODULE WISE ALGORITHM DESCRIPTION 

 

The following section describes the algorithm 

implemented: 

 

Setting up a distributed environment 

 The Java Remote Method Invocation (RMI) system 

used for communication in our project.  

 Start the RMI registry using the command prompt. 

Commands are: 

 rmic updownImpl which generates stub and skeleton 
files used for communication 

 rmiregistry along with the port number to run the RMI 

registry  

 Run the RMI server using java command 

 Connect the clients with this system with the help of 

the IP address of the system 

 

Inputting Parameters 

 The clients must input the parameters for each batch of 

transactions to implement the association rule mining 

on the dataset 

 The parameters on client side are the batch number, 

name of the transaction file on which the mining has to 

be implemented, number of transactions & items 

present the batch and the support count to generate the 

frequent itemsets 

 These input parameters are to be inserted in the UI that 

appears when the user runs project 

 When rules for a batch are computed and if the user 

wishes to compute for the another batch, the input 

parameters of the another batch have to inserted in the 

same manner after choosing the continue option on the 
UI screen 

 On the server side also the user has to enter the 

parameters, namely, the batch number, the minimum 

support count, the minimum confidence level and the 

number of clients present in the system 

 

 
Figure 3: Transaction File 

 
This is an example of a batch of data which consists of a 

set of transactions on which the association rule mining is 

performed. 

 

Generating Frequent Itemsets 

Apriori Algorithm for generating Frequent Itemsets: 

 The user input parameters are stored in the variables 

and the itemset number is incremented 

 generateCandidate () method is called with itemset 

number as the parameter which generates candidate 

sets based on the minimum threshold value provided 

by the user 

 From the candidate sets the frequent itemsets are 

computed by calling the calculateFrequentItemsets () 

method, where itemset number is passed as the 

parameter 

 This process takes place on the client side 

 

Communication 

 The frequent itemsets generated are sent to the server 

with the help of the RMI server 

 Naming.lookup() method is invoked to communicate 

with the server to send the files 

 The server generates global frequent itemsets by 

eliminating infrequent itemsets based on the support 

count provided to generate the frequent itemsets 

 Server sends the frequent itemsets with global counts 

back to all the clients again using the Naming.lookup () 

method 
 

 Transaction Reduction 

 In this module, when the client receives the frequent 

itemset file back with the support counts, it looks for 

the transactions which contain only infrequent items.  

 When it finds such transactions, it deletes them thus 

reducing the transaction file size and making the 

algorithm memory efficient[8].  

 

Generating Association Rules 

 When the server receives all the frequent itemset files 

after all the iterations, it computes all the association 
rules from the global frequent itemsets based on the 

support count and the minimum confidence level. 

 A text file is created to store the association rules, if 

any rule is below the confidence level; it is eliminated. 

 Once the association rules are generated and stored in 

the text files, with the help of the RMI server 

connection, the files are sent to all the clients, so the 

clients can view the rules on their systems 

 

 
Figure 4: Association Rules 

 

The above figure is a snapshot of association rules 

generated and stored in the text file 
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Displaying association rules 

 Once the rules are generated, the pie charts are 

generated to represent the association rules 

 Various classes of Java are used to create the pie 

charts, snippet of our code to create pie charts is shown 

in the image below: 
 

 
Figure5: Code to Create Pie Charts 

 
 With the help of these classes and the code to form pie 

charts from the data provided from the association 
rules file, different pie charts are generated 

 Various pie charts are generated, they include 

association rules of all the items together and 

association rules of each item separately for a clear 

breakdown 

 

Continue the process for the next batch file 

 If the user wants to compute the association rules for 

another batch of transaction, then he/she has to enter 

the new (incremented) batch number 

 Also the name of the new transaction file and its 
parameters have to be entered by the user in UI to 

generate the association rules of the new set of the 

transactions combined with the previous batches 

 With the help of the proposed solution, the 

computation will be done only with the new set of data 

by simply averaging the support counts with those of 

the previous batch to improve the efficiency of the data 

and thereby increasing the dynamicity of the algorithm 

 

Performing Time Series Analysis 

 Thereafter, the user can view the time series analysis 
chart for any rule he chooses. The support counts for 

that rule are extracted from the previous batch files and 

displayed to the user in the form of a line graph. 

 With the help of JFree classes and the code to form line 

graphs from the data extracted from the batch files, the 

time series analysis graph is generated 

 

V. RESULTS AND DISCUSSIONS 

 

Experiments were carried out for testing with following: 

 Consider huge dataset with large numbers of 
transactions and items, divided into n number of 

smaller batch files which are given to the algorithm at 

regular intervals. 

 Run the batch files on general ODAM algorithm and 

compare its result with proposed algorithm. 
 

For example, we implemented the existing ODAM 

algorithm on two clients with 10 transactions initially. 

These transactions were taken from the TTT database 

from UCI repository [9]. The execution time came out to 

be 135 sec on client 1. After this, new batches of 10 

transactions were appended to each client. The existing 

ODAM algorithm took 285 sec to run a total of 20 

transactions on client 1. 
 

Total time taken (ODAM) = 135+285 

          = 420 seconds 
 

On other hand, the proposed solution took 135 sec  to 

execute the same initial 10 transactions. However, when 

the new 10 transactions got appended,  it executed the new 
transactions in 150sec only at client 1, since the previous 

transactions were not scanned again. 
 

Total time taken (proposed solution) =135+150 

                         =285 seconds 
 

Results 

 There was a considerable reduction in time when the 

proposed solution was run on the batch files instead of 

the ODAM algorithm. As seen in the above 

example, the time saved is 132 sec at client 1. Time 

savings = 
420−285

420
∗ 100 

32.14% 
 

The greater the amount of previous transactions which are 

not rescanned, the more the saving in time. After each 

batch, the time saved will increase. Therefore the 

execution time reduces to a considerable amount as a 

whole. 

 Based on the above experiments, similar association 
rules are generated when implemented using normal 

ODAM and proposed solution. 

 These rules are displayed to the user in the form of pie 

charts 
 

Association rules for all items together: 
 

 
 

Association rules for individual item (Rules for items 1 are 

displayed below): 

 

 
Figure 6: Association rules of item 1 
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The above figure clearly shows which association rules of 

item 1 have higher support and also which items it pairs 

better with. 

 

The below chart shows the time series analysis for the 

association rule 1 2 4 -> 3.  Distributed association rule 

mining has been carried out successively over five batches 

of data. The graph shows the changing trend in the given 

rule over the five batches. 

 

 
Figure 7: Time Series Analysis 

 
By analysis of the graph we can expect that the support for 

association rule 1 2 4 ->3 will continue to rise in the next 

batch, as per the trend observed in the previous batches. 
Thus marketing and sales strategies involving items 1, 2, 3 

and 4 can be planned accordingly. 

 

VI. CONCLUSION 

 

After researching and working for 10 Months, we have 

implemented Distributed Association Rule Mining on 

batchwise data. We leveraged the power of the existing 

algorithm for distributed association rule mining, namely, 

Optimized Distributed Association Rule Mining (ODAM), 

and added the functionality of implementing it on dynamic 
data.  The proposed solution gives great results and is 

bound to improve on the time and space efficiency in 

processing batchwise data.  

 

The proposed solution further improves upon ODAM by: 

 The recent trends can be combined with old trends in a 

space and time efficient manner. 

 With pie chart representation user can easily 

differentiate strong association rules and weak 

association rules. 

 
The individual modules are also of extreme importance 

from the standpoint of distributed data mining: 

The transaction Reduction module eliminates infrequent 

items from the transactions, thereby reducing the average 

transaction length and increasing space utilization.  

The pie chart generation module displays the association 

rules related to each item which helps the users to view the 

association rules of the item he is interested in, making 

analysis simpler. 

The time series analysis module allows the user to view 

the changing trends in the support for a rule over the past 

batches. This helps in predicting the future support 

expectancy for that rule.  

The code allows for the algorithm to be run on any number 

of clients connected in a network with minimal tradeoffs 

in computation time. 

 

VII. FUTURE SCOPE 

 

The following are the points which can be added to our 

project: 

 

 Implementing it using Hadoop environment can further 

enhance the speed. 

 The algorithm can be further modified to allow 

dynamic thresholding so that user does not have to 

worry about deciding the ideal threshold to generate 

appropriate association rules. 

 Automating the batch process iterations after certain 

time period; eg. - hourly basis, daily basis, etc. 

 Modify the algorithm further for dynamic streaming of 

data from web so it can be used with e-commerce 

websites. 

 Modify the algorithm to work with vertically 

fragmented database and hybrid-fragmented databases. 

 

REFERENCES 

 
[1] Qiankun Zhao and Sourav S. Bhowmick, “Association Rule 

Mining: A Survey”, Communication of the Association for 

Information Systems, 2003.  

[2] Mafruz Zaman Ashrafi, David Taniar, Kate Smith, “ODAM: An 

Optimized Distributed Association Rule Mining Algorithm”, IEEE 

DISTRIBUTED SYSTEMS ONLINE 1541-4922 © 2004 

Published by the IEEE Computer Society Vol. 5, No. 3; March 

2004. 

[3] Vinaya Sawant, 2 Ketan Shah, “A Survey of Distributed 

Association Rule Mining Algorithms”, Journal of Emerging Trends 

in Computing and Information Sciences Vol. 5, No. 5, May 2014.  

[4] Byung-Hoon Park and Hillol Kargupta, “Distributed Data Mining: 

Algorithms, Systems and Applications” 
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