
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5673 341

Distributed Association Rule Mining on

Batchwise Data

Nisha Kapoor
1
, Nidhi Sonpal

2
, Dhwani Mehta

3
, Vinaya Sawant

4

Student, IT Department, D.J. Sanghvi College of Engineering, Mumbai, India 1, 2, 3

Assistant Professor, IT Department, D.J. Sanghvi College of Engineering, Mumbai, India 4

Abstract: With the growing amount of data generated from millions of transactions taking place every second all over

the world, it has become increasingly necessary to find interesting patterns from this data. Multinational companies,

being spread over the globe, have to integrate data from various geographically dispersed sites. This data is generated

from varied sources in heterogeneous forms and has to be processed before mining can be carried out on it. Mining
association rules from data involves finding correlations between two or more variables in a dataset. Algorithms like

Fast Distributed Mining (FDM) and Count Distribution Algorithm (CDA) have been used for association rule mining in

a distributed environment. However, these algorithms prove to be inefficient when it comes to dynamically streaming

input. Our proposed solution suggests a methodology to implement Association Rule Mining on Distributed Systems

using ODAM (Optimized Distributed Association Rule Mining) algorithm on batchwise data. Further, in an effort to

aid the user in analysing the output, we display the association rules generated for each item as well as for the entire

dataset. Also, the user can view the time series analysis for each association rule.

Keywords: ODAM, Batchwise Data, Apriori, Distributed Association Rule Mining.

I. INTRODUCTION

Distributed Association Rule Mining (DARM) generates

association rules from geographically distributed datasets.

DARM generates global frequent itemsets by combining

and analysing frequent itemsets generated at local sites.

However none of the DARM algorithms, Fast Distributed

Mining (FDM), Count Distribution Algorithm (CDA) or

ODAM (Optimized Distributed Association Rule Mining)

can handle dynamically streaming data. They are

designed to work in a static environment where the

database does not change or get added to.

In a real world scenario, transactional data is always
increasing with time. New transactions get added to the

database at the rate of 1000 every second. We need a time

efficient solution which repeatedly generates rules for the

newly added batches of transactions. The changing trends

in the association rules as new data comes in should be

accurately reflected. Our proposed solution suggests a

methodology to implement Association Rule Mining on

Distributed Systems using ODAM (Optimized Distributed

Association Rule Mining) algorithm on batchwise data. It

avoids repeated scanning of the old transactions thus

giving a considerable time reduction in generating rules
when the data is input batchwise. This makes it ideal for

real world applications where it can generate association

rules keeping pace with continuously streaming in batches

of data. Further, in an effort to aid the user in analyzing

the output, we display the association rules generated for

each item as well as for the entire dataset. This helps the

user to better visualize how a single item is related to all

other items in the database. The user can view the

changing trend of each association rule over all the

previous batches to get an idea of how the support for the

rule has changed over time.

II. REVIEW OF LITERATURE

The papers referred by us helped us in formulating an idea

of the different Distributed Association Rule Mining

(DARM) algorithms.

A. Study of Existing Systems

Association Rule Mining (ARM) is a method of finding

interesting patterns for strategic analysis and business

decisions from huge datasets[1]. It includes various

algorithms – Apriori and Frequent Pattern Mining. In these

algorithms for each iteration we find the candidate

itemsets and prune the infrequent itemsets. ARM when
implemented in distributed environment generates globally

frequent patterns for an organization. It includes

algorithms like Count Distribution Algorithm (CDA), Fast

Distribution Mining (FDM) algorithm and Optimized

Distributed Association Rule Mining (ODAM) algorithm

[2].

Count Distribution Algorithm (CDA) is a data

parallelism algorithm for mining associative rules. It

locally computes support counts for each itemsets and

generates candidate sets based on the local minimum
support count. These candidate sets along with their

support counts are broadcasted to all other nodes. Each

node computes global frequent itemsets in parallel. At the

end of each iteration, all the nodes have same global

frequent itemsets [3].

The main feature of CDA is that it uses a simple

synchronization scheme as it uses only one set of

messages at each iteration[4].

Fast Distribution Mining (FDM) algorithm is a

modification of CDA. Here, in each iteration support

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5673 342

counts of all itemsets are computed. Considering the local

minimum support count for that node, the infrequent items

are pruned locally and the candidate set is generated. The

node, at which an itemset is frequent, broadcasts requests

to all other nodes for collecting their support counts for

that itemset. Once the node receives the counts, it

computes the global count for that candidate. It compares

this count with the global minimum support count to check

if the candidate is globally large. At the end of each

iteration globally large itemsets found are broadcasted to

all the nodes[5].

The three main features of FDM are:

 Using some interesting relationships between locally

and globally generated sets, we minimize the number

of candidate sets generated and thus reduce the number

of messages sent.

 FDM uses both local and global pruning.

 This algorithm requires O(n) for communicating with

each other.

If the distribution of the itemsets among the partitions is
skewed such that the globally frequent itemsets are

confined to a few local sites, then lesser candidate sets are

generated; thus improving the performance of the

algorithm. Another major improvement in FDM is the

usage of relaxation factor. With the help of this, a site

broadcasts not only those candidate sets which clearly

satisfy the minimum support threshold but also the ones

which almost satisfy it. This increases the effectiveness of

global pruning[6].

Optimized Distributed Association Rule Mining
(ODAM) algorithm involves a central server which

receives candidate sets from all the other nodes and

generates global frequent itemsets.

In CD and FDM algorithms numerous candidate itemsets

are generated, which involves high communication costs.

In contrast, ODAM eliminates infrequent items, thereby

reducing dataset size significantly; so that we can

accumulate more transactions in the main memory.

Moreover, the time taken for scanning the database at each

iteration is less. As an added advantage, ODAM reduces

communication costs and enforces synchronization
between local nodes since they communicate only with

global server[7].

B. Present Architecture

A large database DB with D transactions is partitioned

among n geographically distributed sites as DB1, DB2 ….

DBn. The DARM architecture also consists of a global

server which communicates with all the local sites. For

every iteration, each site uses its local database to compute

candidate itemsets which are above the predefined local

minimum support count. The local sites send these
candidate itemsets along with their support counts to the

server.

Based on the counts received, the server calculates the

global count for each itemset by methods such as

averaging, summation, etc. If the count for the itemset

exceeds the global minimum support count, then the

itemset is considered globally frequent. The newly

computed global frequent itemsets are sent back to all the

local sites. The local sites eliminate the infrequent items

from the transactions in memory so as to reduce the

average transaction length which makes the scanning of

transactions faster for future iterations.

C. Drawbacks of Existing System

 Cannot be used with dynamic database.

 Too many or too less rules may be generated based on

threshold values.

 Rules generated is not well presented for human

analysis

 Takes a lot of time to execute the entire algorithm and

generate results.

 The entire algorithm needs to be executed again when

new transactions get added.

III. PROPOSED SOLUTION

Our proposed solution involves modifying the ODAM

algorithm to make it suitable for batch processing in a time

efficient manner.

Figure 1: Block Diagram of Proposed Solution

Input Parameters and Batch file: User provides

transactional batch file and enters parameters such as

batch number, number of items in given transaction file,

number of transactions, minimum support count,

minimum threshold etc. Thus these parameters can be
adjusted as and when required. We use Netbeans Swing

GUI to develop this interface.

Apriori on Client: Apriori acts as a base algorithm for

most parallel algorithms. This algorithm helps to generate

local frequent itemsets. Client connects to the global site

using RMI registry[8].

Association rules generated: Frequent itemsets from

various clients are combined at a global site. This merging

involves averaging support counts from various clients to
generate global frequent itemset. Based on global frequent

itemsets association rules are generated to show

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5673 343

correlations between various itemsets. Further global

frequent itemset is used for transaction reduction, which is

performed by clients on their respective machines to

increase space utilization by eliminating infrequent items

from the transactions.

Pie graph representation: To make analysis of the

association rules easier, we display the association rules

generated for each item as well as for the entire dataset.

This helps to understand correlation of an item to various

other items in the dataset. Each pie chart displays the
support count along with the association rule to allow user

understand the strength of the rule generated. For

generating pie charts we make use of JFrames.

Combine new rules with previous rules and continues

the process next batch file: The new transactions that

keep coming are collected over an interval of time to form

the next batch file. This newly generated batch file is used

to compute new association rule by combining the results

of the previous batch with the new one.

Time series analysis: To analyze how the support for a

particular rule has changed over the past batches, we

display the support counts of that rule over the all the

batches till date in the form of a line graph. This helps the

user in analyzing the upward of downward trend in the

rules and also in predicting the future support expectancy

of the rule.

A. Benefits of proposed solution

 The user can view the association rules of the item he

is interested in, making analysis simpler and more apt

for analysis.

 With pie chart representation user can easily

differentiate strong association rules and weak

association rules

 The user can view the changing trend of each rule over

all the previous batches to get an idea of how the

support for the rule has changed over time.

 The UI designed makes the entire process of generating

association rule very flexible.

 The recent trends can be combined with old trends in a

space and time efficient manner.

 The ODAM algorithm used provides global analysis

and supports transaction reduction, which helps saves

memory.

 The database scan to be performed is much smaller and

thus quicker in batch based computing than static

approach.

 Comparing recent trends with old trends is easily

achieved and can be used to develop time line analysis

of changing business scenario.

 Saves bandwidth costs as only counts of frequent

itemset are sent to global site instead of entire

transactions.

 After being used to find association rules, the old sets

of transactions becomes redundant and are not required

to be stored in memory.

B. Proposed Architecture

The architecture consists of a global server which

communicates with all the local sites using Remote

Method Invocation. The clients will provide the

parameters of the batch and the support count based on

which the frequent itemsets will be generated. For every

iteration, each site uses Apriori algorithm to compute

candidate itemsets which are above the predefined local

minimum support count. The local sites send these

candidate itemsets along with their support counts to the

server.
Based on the counts received, the server calculates the

global count for each itemset by methods such as

averaging. If the count for the itemset exceeds the global

minimum support count, then the itemset is considered

globally frequent. The newly computed global frequent

itemsets are sent back to all the local sites with their

support counts. The local sites then performs transaction

reduction, where the infrequent transactions from the

database are removed so as to reduce the average

transaction length which makes the scanning of

transactions faster for future iterations and also the saves
the memory.

Once all the iterations are done, the association rules are

computed on the server side and are displayed using pie

charts. One pie chart shows the association rules of all

items present in the dataset together and other pie charts

are of each item individually which helps to analyze the

rules of items the user is interested in.

Moreover, after successively running the algorithm on

several batches of data, the time series analysis chart for

any rule over all the batches is generated and displayed to

the user.

Figure 2: Proposed Architecture

After the association rules of a batch are generated the
user can continue the process by inputting another batch of

transaction file and its parameters. For the new batch the

same process is repeated, but the computation is done only

on the new set of transactions and their support counts are

averaged with those of the previous batch, thereby

improving the efficiency and saving the time to compute

the rules.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5673 344

IV. MODULE WISE ALGORITHM DESCRIPTION

The following section describes the algorithm

implemented:

Setting up a distributed environment

 The Java Remote Method Invocation (RMI) system

used for communication in our project.

 Start the RMI registry using the command prompt.

Commands are:

 rmic updownImpl which generates stub and skeleton
files used for communication

 rmiregistry along with the port number to run the RMI

registry

 Run the RMI server using java command

 Connect the clients with this system with the help of

the IP address of the system

Inputting Parameters

 The clients must input the parameters for each batch of

transactions to implement the association rule mining

on the dataset

 The parameters on client side are the batch number,

name of the transaction file on which the mining has to

be implemented, number of transactions & items

present the batch and the support count to generate the

frequent itemsets

 These input parameters are to be inserted in the UI that

appears when the user runs project

 When rules for a batch are computed and if the user

wishes to compute for the another batch, the input

parameters of the another batch have to inserted in the

same manner after choosing the continue option on the
UI screen

 On the server side also the user has to enter the

parameters, namely, the batch number, the minimum

support count, the minimum confidence level and the

number of clients present in the system

Figure 3: Transaction File

This is an example of a batch of data which consists of a

set of transactions on which the association rule mining is

performed.

Generating Frequent Itemsets

Apriori Algorithm for generating Frequent Itemsets:

 The user input parameters are stored in the variables

and the itemset number is incremented

 generateCandidate () method is called with itemset

number as the parameter which generates candidate

sets based on the minimum threshold value provided

by the user

 From the candidate sets the frequent itemsets are

computed by calling the calculateFrequentItemsets ()

method, where itemset number is passed as the

parameter

 This process takes place on the client side

Communication

 The frequent itemsets generated are sent to the server

with the help of the RMI server

 Naming.lookup() method is invoked to communicate

with the server to send the files

 The server generates global frequent itemsets by

eliminating infrequent itemsets based on the support

count provided to generate the frequent itemsets

 Server sends the frequent itemsets with global counts

back to all the clients again using the Naming.lookup ()

method

 Transaction Reduction

 In this module, when the client receives the frequent

itemset file back with the support counts, it looks for

the transactions which contain only infrequent items.

 When it finds such transactions, it deletes them thus

reducing the transaction file size and making the

algorithm memory efficient[8].

Generating Association Rules

 When the server receives all the frequent itemset files

after all the iterations, it computes all the association
rules from the global frequent itemsets based on the

support count and the minimum confidence level.

 A text file is created to store the association rules, if

any rule is below the confidence level; it is eliminated.

 Once the association rules are generated and stored in

the text files, with the help of the RMI server

connection, the files are sent to all the clients, so the

clients can view the rules on their systems

Figure 4: Association Rules

The above figure is a snapshot of association rules

generated and stored in the text file

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5673 345

Displaying association rules

 Once the rules are generated, the pie charts are

generated to represent the association rules

 Various classes of Java are used to create the pie

charts, snippet of our code to create pie charts is shown

in the image below:

Figure5: Code to Create Pie Charts

 With the help of these classes and the code to form pie

charts from the data provided from the association
rules file, different pie charts are generated

 Various pie charts are generated, they include

association rules of all the items together and

association rules of each item separately for a clear

breakdown

Continue the process for the next batch file

 If the user wants to compute the association rules for

another batch of transaction, then he/she has to enter

the new (incremented) batch number

 Also the name of the new transaction file and its
parameters have to be entered by the user in UI to

generate the association rules of the new set of the

transactions combined with the previous batches

 With the help of the proposed solution, the

computation will be done only with the new set of data

by simply averaging the support counts with those of

the previous batch to improve the efficiency of the data

and thereby increasing the dynamicity of the algorithm

Performing Time Series Analysis

 Thereafter, the user can view the time series analysis
chart for any rule he chooses. The support counts for

that rule are extracted from the previous batch files and

displayed to the user in the form of a line graph.

 With the help of JFree classes and the code to form line

graphs from the data extracted from the batch files, the

time series analysis graph is generated

V. RESULTS AND DISCUSSIONS

Experiments were carried out for testing with following:

 Consider huge dataset with large numbers of
transactions and items, divided into n number of

smaller batch files which are given to the algorithm at

regular intervals.

 Run the batch files on general ODAM algorithm and

compare its result with proposed algorithm.

For example, we implemented the existing ODAM

algorithm on two clients with 10 transactions initially.

These transactions were taken from the TTT database

from UCI repository [9]. The execution time came out to

be 135 sec on client 1. After this, new batches of 10

transactions were appended to each client. The existing

ODAM algorithm took 285 sec to run a total of 20

transactions on client 1.

Total time taken (ODAM) = 135+285

 = 420 seconds

On other hand, the proposed solution took 135 sec to

execute the same initial 10 transactions. However, when

the new 10 transactions got appended, it executed the new
transactions in 150sec only at client 1, since the previous

transactions were not scanned again.

Total time taken (proposed solution) =135+150

 =285 seconds

Results

 There was a considerable reduction in time when the

proposed solution was run on the batch files instead of

the ODAM algorithm. As seen in the above

example, the time saved is 132 sec at client 1. Time

savings =
420−285

420
∗ 100

32.14%

The greater the amount of previous transactions which are

not rescanned, the more the saving in time. After each

batch, the time saved will increase. Therefore the

execution time reduces to a considerable amount as a

whole.

 Based on the above experiments, similar association
rules are generated when implemented using normal

ODAM and proposed solution.

 These rules are displayed to the user in the form of pie

charts

Association rules for all items together:

Association rules for individual item (Rules for items 1 are

displayed below):

Figure 6: Association rules of item 1

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5673 346

The above figure clearly shows which association rules of

item 1 have higher support and also which items it pairs

better with.

The below chart shows the time series analysis for the

association rule 1 2 4 -> 3. Distributed association rule

mining has been carried out successively over five batches

of data. The graph shows the changing trend in the given

rule over the five batches.

Figure 7: Time Series Analysis

By analysis of the graph we can expect that the support for

association rule 1 2 4 ->3 will continue to rise in the next

batch, as per the trend observed in the previous batches.
Thus marketing and sales strategies involving items 1, 2, 3

and 4 can be planned accordingly.

VI. CONCLUSION

After researching and working for 10 Months, we have

implemented Distributed Association Rule Mining on

batchwise data. We leveraged the power of the existing

algorithm for distributed association rule mining, namely,

Optimized Distributed Association Rule Mining (ODAM),

and added the functionality of implementing it on dynamic
data. The proposed solution gives great results and is

bound to improve on the time and space efficiency in

processing batchwise data.

The proposed solution further improves upon ODAM by:

 The recent trends can be combined with old trends in a

space and time efficient manner.

 With pie chart representation user can easily

differentiate strong association rules and weak

association rules.

The individual modules are also of extreme importance

from the standpoint of distributed data mining:

The transaction Reduction module eliminates infrequent

items from the transactions, thereby reducing the average

transaction length and increasing space utilization.

The pie chart generation module displays the association

rules related to each item which helps the users to view the

association rules of the item he is interested in, making

analysis simpler.

The time series analysis module allows the user to view

the changing trends in the support for a rule over the past

batches. This helps in predicting the future support

expectancy for that rule.

The code allows for the algorithm to be run on any number

of clients connected in a network with minimal tradeoffs

in computation time.

VII. FUTURE SCOPE

The following are the points which can be added to our

project:

 Implementing it using Hadoop environment can further

enhance the speed.

 The algorithm can be further modified to allow

dynamic thresholding so that user does not have to

worry about deciding the ideal threshold to generate

appropriate association rules.

 Automating the batch process iterations after certain

time period; eg. - hourly basis, daily basis, etc.

 Modify the algorithm further for dynamic streaming of

data from web so it can be used with e-commerce

websites.

 Modify the algorithm to work with vertically

fragmented database and hybrid-fragmented databases.

REFERENCES

[1] Qiankun Zhao and Sourav S. Bhowmick, “Association Rule

Mining: A Survey”, Communication of the Association for

Information Systems, 2003.

[2] Mafruz Zaman Ashrafi, David Taniar, Kate Smith, “ODAM: An

Optimized Distributed Association Rule Mining Algorithm”, IEEE

DISTRIBUTED SYSTEMS ONLINE 1541-4922 © 2004

Published by the IEEE Computer Society Vol. 5, No. 3; March

2004.

[3] Vinaya Sawant, 2 Ketan Shah, “A Survey of Distributed

Association Rule Mining Algorithms”, Journal of Emerging Trends

in Computing and Information Sciences Vol. 5, No. 5, May 2014.

[4] Byung-Hoon Park and Hillol Kargupta, “Distributed Data Mining:

Algorithms, Systems and Applications”

[5] Cornelia Győrödi , “A Comparative Study Of Distributed

Algorithms In Mining Association Rules”

[6] David W Cheung, Jiawei Han, Vincent T Ng, Ada W. Fu, Yongjian

Fu, “A Fast Distributed Algorithm for Mining Association Rules”,

International Conference on Parallel and Distributed Systems

Proceedings, 1996, p. 31-42.

[7] Vinaya Sawant And Dr. Ketan Shah, “A Review Of Distributed

Data Mining Using Agents”, International Journal of Advanced

Technology & Engineering Research (IJATER)

[8] Jaiwei Han, Micheline Kamber and Jian Pie, “Data Mining

Concepts and Techniques”

[9] Bache, K. & Lichman, M. (2013). UCI Machine Learning

Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of

California, School of Information and Computer Science.

0

0.2

0.4

0.6

0.8

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

1 2 4 -> 3

1 2 4 -> 3

